Copied to
clipboard

G = C24.72D10order 320 = 26·5

12nd non-split extension by C24 of D10 acting via D10/C10=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.72D10, (C2×C20)⋊38D4, (C23×C4)⋊6D5, C207D451C2, (C23×C20)⋊10C2, C20.425(C2×D4), (C2×D20)⋊51C22, C225(C4○D20), C242D515C2, C4⋊Dic565C22, C20.48D451C2, (C2×C10).289C24, (C2×C20).887C23, C57(C22.19C24), (C4×Dic5)⋊59C22, (C22×C4).449D10, C10.135(C22×D4), D10⋊C443C22, (C2×Dic10)⋊59C22, C10.D445C22, C23.235(C22×D5), C22.304(C23×D5), C23.21D1013C2, C23.23D1033C2, (C23×C10).111C22, (C22×C20).530C22, (C22×C10).418C23, (C2×Dic5).151C23, (C22×D5).127C23, C23.D5.130C22, (C4×C5⋊D4)⋊51C2, (C2×C4×D5)⋊54C22, (C2×C4○D20)⋊14C2, (C2×C4)⋊17(C5⋊D4), C10.64(C2×C4○D4), C2.72(C2×C4○D20), C4.145(C2×C5⋊D4), (C2×C10)⋊12(C4○D4), C2.8(C22×C5⋊D4), (C2×C10).575(C2×D4), C22.35(C2×C5⋊D4), (C2×C4).740(C22×D5), (C2×C5⋊D4).145C22, SmallGroup(320,1463)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C24.72D10
C1C5C10C2×C10C22×D5C2×C4×D5C2×C4○D20 — C24.72D10
C5C2×C10 — C24.72D10
C1C2×C4C23×C4

Generators and relations for C24.72D10
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e10=f2=d, ab=ba, ac=ca, faf-1=ad=da, ae=ea, fbf-1=bc=cb, bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e9 >

Subgroups: 1022 in 330 conjugacy classes, 119 normal (25 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, D5, C10, C10, C10, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, C24, Dic5, C20, C20, D10, C2×C10, C2×C10, C2×C10, C42⋊C2, C4×D4, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C23×C4, C2×C4○D4, Dic10, C4×D5, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C2×C20, C22×D5, C22×C10, C22×C10, C22×C10, C22.19C24, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4, C23.D5, C2×Dic10, C2×C4×D5, C2×D20, C4○D20, C2×C5⋊D4, C22×C20, C22×C20, C22×C20, C23×C10, C20.48D4, C23.21D10, C4×C5⋊D4, C23.23D10, C207D4, C242D5, C2×C4○D20, C23×C20, C24.72D10
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, C24, D10, C22×D4, C2×C4○D4, C5⋊D4, C22×D5, C22.19C24, C4○D20, C2×C5⋊D4, C23×D5, C2×C4○D20, C22×C5⋊D4, C24.72D10

Smallest permutation representation of C24.72D10
On 80 points
Generators in S80
(1 67)(2 68)(3 69)(4 70)(5 71)(6 72)(7 73)(8 74)(9 75)(10 76)(11 77)(12 78)(13 79)(14 80)(15 61)(16 62)(17 63)(18 64)(19 65)(20 66)(21 59)(22 60)(23 41)(24 42)(25 43)(26 44)(27 45)(28 46)(29 47)(30 48)(31 49)(32 50)(33 51)(34 52)(35 53)(36 54)(37 55)(38 56)(39 57)(40 58)
(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)
(1 67)(2 68)(3 69)(4 70)(5 71)(6 72)(7 73)(8 74)(9 75)(10 76)(11 77)(12 78)(13 79)(14 80)(15 61)(16 62)(17 63)(18 64)(19 65)(20 66)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 45 11 55)(2 54 12 44)(3 43 13 53)(4 52 14 42)(5 41 15 51)(6 50 16 60)(7 59 17 49)(8 48 18 58)(9 57 19 47)(10 46 20 56)(21 73 31 63)(22 62 32 72)(23 71 33 61)(24 80 34 70)(25 69 35 79)(26 78 36 68)(27 67 37 77)(28 76 38 66)(29 65 39 75)(30 74 40 64)

G:=sub<Sym(80)| (1,67)(2,68)(3,69)(4,70)(5,71)(6,72)(7,73)(8,74)(9,75)(10,76)(11,77)(12,78)(13,79)(14,80)(15,61)(16,62)(17,63)(18,64)(19,65)(20,66)(21,59)(22,60)(23,41)(24,42)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(31,49)(32,50)(33,51)(34,52)(35,53)(36,54)(37,55)(38,56)(39,57)(40,58), (21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,67)(2,68)(3,69)(4,70)(5,71)(6,72)(7,73)(8,74)(9,75)(10,76)(11,77)(12,78)(13,79)(14,80)(15,61)(16,62)(17,63)(18,64)(19,65)(20,66)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,45,11,55)(2,54,12,44)(3,43,13,53)(4,52,14,42)(5,41,15,51)(6,50,16,60)(7,59,17,49)(8,48,18,58)(9,57,19,47)(10,46,20,56)(21,73,31,63)(22,62,32,72)(23,71,33,61)(24,80,34,70)(25,69,35,79)(26,78,36,68)(27,67,37,77)(28,76,38,66)(29,65,39,75)(30,74,40,64)>;

G:=Group( (1,67)(2,68)(3,69)(4,70)(5,71)(6,72)(7,73)(8,74)(9,75)(10,76)(11,77)(12,78)(13,79)(14,80)(15,61)(16,62)(17,63)(18,64)(19,65)(20,66)(21,59)(22,60)(23,41)(24,42)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(31,49)(32,50)(33,51)(34,52)(35,53)(36,54)(37,55)(38,56)(39,57)(40,58), (21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,67)(2,68)(3,69)(4,70)(5,71)(6,72)(7,73)(8,74)(9,75)(10,76)(11,77)(12,78)(13,79)(14,80)(15,61)(16,62)(17,63)(18,64)(19,65)(20,66)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,45,11,55)(2,54,12,44)(3,43,13,53)(4,52,14,42)(5,41,15,51)(6,50,16,60)(7,59,17,49)(8,48,18,58)(9,57,19,47)(10,46,20,56)(21,73,31,63)(22,62,32,72)(23,71,33,61)(24,80,34,70)(25,69,35,79)(26,78,36,68)(27,67,37,77)(28,76,38,66)(29,65,39,75)(30,74,40,64) );

G=PermutationGroup([[(1,67),(2,68),(3,69),(4,70),(5,71),(6,72),(7,73),(8,74),(9,75),(10,76),(11,77),(12,78),(13,79),(14,80),(15,61),(16,62),(17,63),(18,64),(19,65),(20,66),(21,59),(22,60),(23,41),(24,42),(25,43),(26,44),(27,45),(28,46),(29,47),(30,48),(31,49),(32,50),(33,51),(34,52),(35,53),(36,54),(37,55),(38,56),(39,57),(40,58)], [(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48)], [(1,67),(2,68),(3,69),(4,70),(5,71),(6,72),(7,73),(8,74),(9,75),(10,76),(11,77),(12,78),(13,79),(14,80),(15,61),(16,62),(17,63),(18,64),(19,65),(20,66),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,45,11,55),(2,54,12,44),(3,43,13,53),(4,52,14,42),(5,41,15,51),(6,50,16,60),(7,59,17,49),(8,48,18,58),(9,57,19,47),(10,46,20,56),(21,73,31,63),(22,62,32,72),(23,71,33,61),(24,80,34,70),(25,69,35,79),(26,78,36,68),(27,67,37,77),(28,76,38,66),(29,65,39,75),(30,74,40,64)]])

92 conjugacy classes

class 1 2A2B2C2D···2I2J2K4A4B4C4D4E···4J4K···4P5A5B10A···10AD20A···20AF
order12222···22244444···44···45510···1020···20
size11112···2202011112···220···20222···22···2

92 irreducible representations

dim1111111112222222
type+++++++++++++
imageC1C2C2C2C2C2C2C2C2D4D5C4○D4D10D10C5⋊D4C4○D20
kernelC24.72D10C20.48D4C23.21D10C4×C5⋊D4C23.23D10C207D4C242D5C2×C4○D20C23×C20C2×C20C23×C4C2×C10C22×C4C24C2×C4C22
# reps1214222114281221632

Matrix representation of C24.72D10 in GL4(𝔽41) generated by

40000
04000
00400
0001
,
1000
04000
0010
00040
,
40000
04000
00400
00040
,
1000
0100
00400
00040
,
40000
04000
0080
0005
,
04000
40000
0005
0080
G:=sub<GL(4,GF(41))| [40,0,0,0,0,40,0,0,0,0,40,0,0,0,0,1],[1,0,0,0,0,40,0,0,0,0,1,0,0,0,0,40],[40,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40],[1,0,0,0,0,1,0,0,0,0,40,0,0,0,0,40],[40,0,0,0,0,40,0,0,0,0,8,0,0,0,0,5],[0,40,0,0,40,0,0,0,0,0,0,8,0,0,5,0] >;

C24.72D10 in GAP, Magma, Sage, TeX

C_2^4._{72}D_{10}
% in TeX

G:=Group("C2^4.72D10");
// GroupNames label

G:=SmallGroup(320,1463);
// by ID

G=gap.SmallGroup(320,1463);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,675,12550]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^10=f^2=d,a*b=b*a,a*c=c*a,f*a*f^-1=a*d=d*a,a*e=e*a,f*b*f^-1=b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^9>;
// generators/relations

׿
×
𝔽